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1. Introduction and main results

We consider the Ginibre matrix ensemble, i.e., n×nmatricesX =
(
xij
)n
i,j=1

with independent,

identically distributed (i.i.d.) Gaussian entries, where
√
nxij is a standard real or complex

Gaussian random variable. We use the parameter β = 1, 2 to distinguish the real Ginibre
ensemble (β = 1) and the complex Ginibre ensemble (β = 2).

Let {σi}ni=1 denote the eigenvalues of the Ginibre matrix X. The corresponding empirical
spectral measure (ESD), µn := 1

n

∑n
i=1 δσi , converges to the uniform distribution on the unit

disk in the complex plane [Gin65,Ede97], which is also known as the celebrated circular law. Fur-
thermore, the large deviation principle (LDP) from the circular law was established in [BAZ98]
for the real Ginibre ensemble and [PH98] for the complex Ginibre ensemble, with speed n2 and
a good rate function as follows.

Theorem 1.1 ([BAZ98, PH98]). The empirical spectral measures µn of the Ginibre ensemble
(β = 1, 2) satisfy the LDP with speed n2 and good rate function given by

I(µ) =
β

2

(∫
C
|z|2µ(d2z)−

∫
C

∫
C
log |z − w|µ(d2z)µ(d2w)

)
− 3β

8
. (1.1)

Moreover, the uniform distribution σD on the unit disk is the unique minimizer of I(·) so that
I(σD) = 0.

Although the circular law indeed holds for a wide class of matrices with i.i.d. entries [Gir84,
Bai97,TV10], the LDP from the circular law is still widely open beyond the Ginibre ensembles.
On the other hand, the LDPs for the ESDs and extremal eigenvalues of Hermitian random
matrices have been extensively studied since the seminal works [BAG97, BADG01]; see the
survey paper [Gui23] for more details.



2

However, deviation estimates for the extremal eigenvalues of non-Hermitian matrices seem
rare (with the exception of a few results discussed below). In this paper, we start the investi-
gation in this direction and focus on the rightmost eigenvalue maxni=1{Reσi} and the spectral
radius ρn = maxni=1{|σi|}. Besides its mathematical interest, the rightmost eigenvalue of a large
non-Hermitian matrix is closely related to the stability properties of complex biological sys-
tems [May72]. Motivated by this, a series of works [Gem86,BY86,BCCT18,BCGZ22] has proved
that both the rightmost eigenvalue and the spectral radius converge to one as the dimension goes
to infinity, at a nearly optimal speed O(n−1/2+ϵ) [AEK21]. In particular for Ginibre ensembles,
both of them have the following three-term asymptotic expansions [Rid03,RS14,Ben10,CESX22]

n
max
i=1

Reσi
d
=1 +

√
γ′n
4n

+
Gn√
4nγ′n

, γ′n :=
log n− 5 log log n− log(2π4)

2
, (1.2)

ρn(X)
d
=1 +

√
γn
4n

+
Gn√
4nγn

, γn := log n− 2 log log n− log 2π, (1.3)

where Gn is an asymptotic Gumbel random variable as n → ∞, i.e., P (Gn ≤ t) → exp(−β
2 e

−t).
We remark that [CESX22] also proves an effective estimate on the right-tail asymptotics for any
1 ≪ t ≪

√
log n; in particular,

lim
n→∞

P
(

n
max
i=1

Reσi ≥ 1 +

√
γ′n
4n

+
t√
4nγ′n

)
∼ β

2
e−t, t → ∞. (1.4)

It is worth mentioning that the Gumbel fluctuations for general matrices with i.i.d. entries as
in (1.2)–(1.3) have been proved very recently in [CEX23]. We also refer to the survey papers
[BF22,BF23] on the recent progress on the Ginibre ensembles and the references therein.

It was well known [Gin65] that the eigenvalues {σi}ni=1 of the complex Ginibre ensemble X
form a determinantal point process, whose density function is given by

pn(z1, . . . , zn) =
nn

πnn!
e−n

∑
i|zi|2 det

(
Kn(zi, zj)

)n
i,j=1

, Kn(z, w) :=
n−1∑
l=0

(nzw)l

l!
. (1.5)

In particular, Kostlan observed [Kos92] that the collection of moduli of the eigenvalues of
√
2nX

has the same distribution as the collection of independent chi-distributed random variables with
even degrees, i.e.,

{
√
2n|σ1|,

√
2n|σ2|, · · · ,

√
2n|σn|}

d
= {χ2, χ4, · · · , χ2n}. (1.6)

Heuristically, the large deviations of the spectral radius of
√
2nX are mainly from that of the

chi-distributed random variable with the largest degree, i.e.,

P
(

n
max
i=1

|σi| ≥ t
)
≈ P

(
χ2n ≥

√
2nt
)
≈ e−n

(
t2−2 log t−1

)
, t ≥ 1. (1.7)

A formal large deviation estimate for the density of the spectral radius of complex Ginibre
ensemble has already been obtained [LACTGMS18,CMV16] in the Coulomb gas setting with
general potentials, from which an LDP follows immediately.

However, for the real Ginibre ensemble, Kostlan’s observation in (1.6) unfortunately fails and
the eigenvalues instead form a Pfaffian point process with an explicit correlation kernel given
by [BS09,RS14]. Typically there exist O(

√
n) eigenvalues lying on the real line [EKS94], and

the asymptotic statistics of the real eigenvalues are very different from those of the complex
eigenvalues [BS09]. In particular, the limiting distribution of the largest real eigenvalue has
Gaussian right-tail asymptotics [PTZ17,FN07], i.e.,

lim
n→∞

P
(
max
σi∈R

σi ≥ 1 +
t√
n

)
∼ e−t2

4
√
πt

, t → ∞, (1.8)
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which is quite different than that of the complex eigenvalues as shown in (1.4).

The first main result of this paper is the following LDPs for the spectral radius and rightmost
eigenvalue of the Ginibre ensembles.

Theorem 1.2 (LDPs for extremal eigenvalues). For the real (β = 1) and complex (β = 2)
Ginibre ensemble, ρn = maxni=1{|σi|} satisfies the LDP with speed n and good rate function

Iβ(t) =

{
β
2

(
t2 − 2 log t− 1

)
, t ≥ 1,

+∞, t < 1.
(1.9)

The same LDP also holds true for the rightmost eigenvalue maxni=1Reσi.

The above LDP for the spectral radius in the complex case (β = 2) agrees with [LACTGMS18,
Eq. (11)]. In the real case (β = 1), the LDP with the rate function I2 also holds for the largest
complex eigenvalue in modulus. However, in contrast to the typical estimates stated in (1.2)-(1.3)
and (1.8), the largest real eigenvalue dominates the complex eigenvalues in the large deviation
regime, which yields the rate function I1.

Moreover, we derive the following moderate deviation estimates between the large deviations
in Theorem 1.2 and the typical estimates in (1.2)–(1.3) and (1.8) for the Ginibre ensembles.

Theorem 1.3 (Moderate deviations). Consider the real (β = 1) and complex (β = 2) Ginibre

ensemble. For any
√

γn
4n ≤ dn ≪ 1 with γn in (1.3), there exist constants C1, C2 > 0 such that

P
(

n
max
i=1

|σi| ≥ 1 + dn

)
≤ C1√

n(dn)2
e−2n(dn)2(1−O(dn)) +

C2√
ndn

e−n(dn)2(1−O(dn))1β=1. (1.10)

For any
√

γ′
n

4n ≤ dn ≪ 1 with γ′n in (1.2), there exist constants C ′
1, C

′
2 > 0 such that

P
(

n
max
i=1

Reσi ≥ 1 + dn

)
≤ C ′

1

n(dn)5/2
e−2n(dn)2(1−O(dn)) +

C ′
2√

ndn
e−n(dn)2(1−O(dn))1β=1. (1.11)

In particular, in the real case (β = 1), for any n−1/2 ≪ dn ≪ 1, there exists C > 0 such that

P
(
max
σi∈R

σi ≥ 1 + dn

)
≤ C√

ndn
e−n(dn)2(1−O(dn)), (1.12)

and the same also holds true for maxσi∈R |σi|. Finally, for any
√
log n/n ≪ dn ≪ 1, we have

lim
n→∞

1

n(dn)2
logP

(
n

max
i=1

|σi| ≥ 1 + tdn

)
= −βt2, t > 0. (1.13)

The same statement as in (1.13) also holds true for maxni=1Reσi.

We remark that the deviation estimates in (1.12) for the real eigenvalues (β = 1) are consistent
with the Gaussian right-tail asymptotics of the limiting distribution as stated in (1.8).

Finally, we obtain the following deviation estimates for the second leading term in the asymp-
totic expansions (1.2)–(1.3). Such polynomially small deviation estimates are indeed universal
for any i.i.d matrices beyond Ginibre ensembles. More precisely, we consider any matrix X with

i.i.d. entries xab
d
= n−1/2χ, where χ satisfies Eχ = 0, E|χ|2 = 1, and additionally Eχ2 = 0 in

the complex case. Moreover, we also assume the following finite moment condition, i.e., there
exists constants Mk > 0 such that

E
∣∣χ∣∣k ≤ Mk, k ∈ N. (1.14)

Theorem 1.4 (Small deviations). Given any real (β = 1) or complex (β = 2) i.i.d. matrix
defined as above, for any s, t > 1, there exists constants C,C ′, Cs, Ct > 0 such that

P
(

n
max
i=1

|σi| ≥ 1 + s

√
γn
4n

)
≤ C(log n)Cs

(
n− s2−1

2 + n− s2

4 1β=1

)
, (1.15)
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P
(

n
max
i=1

Reσi ≥ 1 + t

√
γ′n
4n

)
≤ C ′(log n)Ct

(
n− t2−1

4 + n− t2

8 1β=1

)
, (1.16)

for sufficiently large n, with γn, γ
′
n given in (1.2)–(1.3). In particular, for any 1 ≪ sn ≪ log n,

P
(

n
max
i=1

|σi| ≥ 1 +

√
γn
4n

+
sn√
4nγn

)
≤ C ′′e−sn , (1.17)

and the same estimate also holds true for maxni=1Reσi with γ′n in (1.2).

Comparing (1.15) with (1.16) at the same level in the complex case (i.e., β = 2 and set

t =
√
2s with s > 1), the small probability of the rightmost eigenvalue gains an additional n−1/4

than that of the spectral radius, mainly due to the volume effect of the complex eigenvalues
taken into consideration. However in the real case (β = 1), the difference between them almost

vanishes beyond the level 1 +
√

logn
2n , since the corresponding small deviations come from the

real eigenvalues as estimated in (1.12). Moreover, the estimate in (1.17) also agrees with the
Gumbel right-tail asymptotics as stated in (1.4).

Conventions and notations: For n-dependent positive quantities fn, gn we use the notation
fn ≪ gn to denote that limn→∞(fn/gn) = 0. For positive quantities f, g we write f ≲ g and
f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for some constants c, C > 0 independent from
n. Throughout the paper c, C > 0 (resp. ct, Ct > 0) denote small and large absolute constants
(resp. constants depending only on t), respectively, which may change from line to line. In the

following we will use the notations PGin(C) (or EGin(C)) and PGin(R) (or EGin(R)) to denote the
probability (or expectation) for the complex and real Ginibre matrix, respectively.

2. Proof of Theorem 1.2

2.1. Proof for the complex Ginibre Ensemble. To prove Theorem 1.2 in the complex case,
it suffices to prove the following proposition.

Proposition 2.1. For any t < 1, we have

lim sup
n→∞

1

n
logPGin(C)(ρn ≤ t) = −∞ (2.1)

and for any t ≥ 1,

lim
n→∞

1

n
logPGin(C)(ρn ≥ t) = −(t2 − 2 log t− 1). (2.2)

The above also holds true for maxni=1Reσi.

Recall from [Meh04] that the eigenvalues of the complex Ginibre ensemble in (1.5) form a
determinantal point process with k-point correlation function given by

p(k)n (z1, . . . , zk) = det
(
Kn(zi, zj)

)k
i,j=1

, Kn(z, w) :=
n

π
e−n(|z|2+|w|2)/2en−1(nzw), (2.3)

where the polynomial en−1 is defined by

en−1(z) :=
n−1∑
k=0

zk

k!
= ez

Γ(n, z)

Γ(n)
, Γ(n, z) :=

∫ ∞

z
tn−1e−tdt, (2.4)

with the integration contour going from z ∈ C to the real infinity. These polynomials have the
following precise asymptotic estimates.
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Lemma 2.2 (Proposition 3 in [BG07]). Uniformly in t > 0, we have

e−nten(nt) = 10≤t<1 +
1√
2

µ(t)t

t− 1
erfc

(√
nµ(t)

)(
1 +O

( 1√
n

))
, (2.5)

with µ(t) = |t− 1− log t|1/2 and

erfc(t) :=
2√
π

∫ ∞

t
e−s2ds =

e−t2

√
πt

(
1− 1

2t2
+O(|t|−4)

)
. (2.6)

Proof of Proposition 2.1. The first estimate (2.1) follows directly from the LDP for the empirical
spectral measures in Theorem 1.1. Indeed, we may take a bounded Lipschitz function f : C → R
supported in {z ∈ C : Re z ≥ t} such that f(z) = 1 for Re z > t+1

2 where 0 < t < 1. By the
LDP for the empirical spectral measures µn,

P (ρn ≤ t) ≤ P
(

n
max
i=1

Reσi ≤ t
)
≤ P

(∣∣∣ ∫ fdµn − 1

π

∫
f(z)d2z

∣∣∣ > δ
)
≤ e−cn2

for some δ > 0, where c > 0 depends on f and δ.
We next prove the second estimate (2.2) for t ≥ 1. For t = 1, it follows directly from (1.3)

that P (ρn ≥ 1) ≥ c for some constant c > 0. We hence focus on proving (2.2) for t > 1. To
obtain the upper bound, we write

P (ρn ≥ t) =P
(
#{1 ≤ i ≤ n : |σi| ≥ t} ≥ 1

)
≤ E

[
#{1 ≤ i ≤ n : |σi| ≥ t}

]
. (2.7)

Note that the one point correlation function for the eigenvalue process is given by Kn(z, z) in
(2.3). Hence for t > 1, we have

E
[
#{1 ≤ i ≤ n : |σi| ≥ t}

]
=

∫
|z|≥t

Kn(z, z)d
2z =

∫
|z|≥t

n

π
e−n|z|2en−1(n|z|2)d2z

=

∫
|z|≥t

n

π
√
2πn

1

|z|2 − 1
e−n
(
|z|2−2 log |z|−1

)
d2z
(
1 +O(n−1/2)

)
=

√
2

π

∫ ∞

t

r

r2 − 1
e−n(r2−2 log r−1)+ 1

2
logndr

(
1 +O(n−1/2)

)
≤ Cte

−n
(
t2−2 log t−1

)
− 1

2
logn, (2.8)

where we also used that from Lemma 2.2

en−1(nz) =
(ez)n√

2πn(z − 1)

(
1 +O

( 1√
n

))
,

and the following estimate from integration by parts

t2e−n(t2−2 log t)

2n(t2 − 1)2

[
1− t2 + 1

n(t2 − 1)2

]
≤
∫ ∞

t

r

r2 − 1
e−n(r2−2 log r)dr ≤ t2e−n(t2−2 log t)

2n(t2 − 1)2
, (2.9)

for t > 1. One could obtain a similar lower bound from (2.9) as in (2.8), i.e.,

E
[
#{1 ≤ i ≤ n : |σi| ≥ t}

]
≥ C ′

te
−n
(
t2−2 log t−1

)
− 1

2
logn. (2.10)

Combining (2.8) with (2.7), we obtain the desired upper bound

P (ρn ≥ t) ≤ Cte
−n
(
t2−2 log t−1

)
− 1

2
logn. (2.11)

To obtain the matching lower bound, we have

P (ρn ≥ t) = P
(
#{1 ≤ i ≤ n : |σi| ≥ t} ≥ 1

)
≥ 1

n
E
[
#{1 ≤ i ≤ n : |σi| ≥ t}

]
≥ C ′

te
−n
(
t2−2 log t−1

)
− 3

2
logn, (2.12)

where we also used (2.10). This together with (2.11) proves (2.2).
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To end the proof, we consider the rightmost eigenvalue. Similar to (2.7)–(2.8), we have

P
( n
max
i=1

Reσi ≥ t
)
=E

[
#{1 ≤ i ≤ n : Reσi ≥ t}

]
=

∫
R

∫
x≥t

Kn(x+ iy, x+ iy)dxdy

≤
∫
|z|≥t

Kn(z, z)d
2z ≤ Cte

−n
(
t2−2 log t−1

)
− 1

2
logn, (2.13)

for t > 1. One could obtain a similar lower bound as in (2.12), i.e.,

P
( n
max
i=1

Reσi ≥ t
)
≥ 1

n
E
[
#{1 ≤ i ≤ n : Reσi ≥ t}

]
=

1

n

∫
R

∫
x≥t

n

π
√
2πn

1

x2 + y2 − 1
e−n
(
x2+y2−log(x2+y2)−1

)
dxdy

(
1 +O(n−1/2)

)
≥ C

1√
n

∫
x≥t

(∫
R

1

x2 + y2 − 1
e−ny2dy

)
e−n
(
x2−log(x2)−1

)
dx

≥ C
1

n

∫ ∞

t

1

x2 − 1
e−n
(
x2−log(x2)−1

)
dx

≥ C ′
te

−n
(
t2−2 log t−1

)
−2 logn, (2.14)

where we used that log(x2 + y2) ≥ log(x2), and for sufficiently large n,∫ ∞

0

1

x2 + y2 − 1
e−ny2dy =

2n√
x2 − 1

∫ ∞

0
arctan

( y√
x2 − 1

)
ye−ny2dy ≥ C√

n(x2 − 1)
,

together with the following estimates from integration by parts

te−n(t2−2 log t)

2n(t2 − 1)2

[
1− 3t2 + 1

2n(t2 − 1)2

]
≤
∫ ∞

t

1

r2 − 1
e−n(r2−2 log r)dr ≤ te−n(t2−2 log t)

2n(t2 − 1)2
, (2.15)

for t > 1. We hence finish the proof of Proposition 2.1. □

2.2. Proof for the real Ginibre Ensemble. Given a real Ginibre matrix of dimension n with
n = L + 2M , where L is the number of real eigenvalues, and M is the number of conjugated
pairs of complex eigenvalues. The explicit formula for the joint density distribution of L real
eigenvalues and M complex eigenvalues in the upper half plane was first introduced in [LS91,
Ede97]. As the analog of (2.3), these eigenvalues indeed form a Pfaffian point process with the
so-called (l,m)-correlation functions [BS09, Theorem 8] (or see [RS14, Propositions 2.1–2.2]).
In particular, the one point correlation functions for the complex and real eigenvalue process
are given by [Ede97,EKS94], respectively, i.e.,

SC,C
n (z, z) :=

√
2n3/2|Im z|√

π
e2n(Im z)2 erfc(

√
2n|Im z|)e−n|z|2en−2(n|z|2), (2.16)

SR,R
n (x, x) :=

√
n

2π
e−nx2

en−2(nx
2) +

n
n
2 |x|n−1e−

n
2
x2

2
n
2 Γ
(
n
2

)
Γ
(
n−1
2

) ∫ nx2

2

0
u

n−3
2 e−udu. (2.17)

We remark that these are also part of the Pfaffian kernels introduced in [BS09].

Proposition 2.3. For any t > 1, we have

lim
n→∞

1

n
logPGin(R)

(
max

σi∈C\R

∣∣σi∣∣ ≥ t
)
=−

(
t2 − 2 log t− 1

)
, (2.18)

lim
n→∞

1

n
logPGin(R)

(
max
σi∈R

σi ≥ t
)
=− t2 − 2 log t− 1

2
. (2.19)

The same statement as in (2.18) also holds true for maxσi∈C\RReσi, and (2.19) also holds true
for maxσi∈R |σi|.
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Proof of Proposition 2.3. The proof is similar to that of Proposition 2.1. We first consider the
complex eigenvalues in (2.18). From Lemma 2.2 note that

SC,C
n (z, z) =

√
2nπe2n(Im z)2 |Im z| erfc(

√
2n|Im z|)Kn−1(z, z)e

1−|z|2
(
1 +O(n−1/2)

)
= e1−|z|2Kn−1(z, z)

(
1 +O

(
min

{
1,

1

n(Im z)2

}
+

1√
n

))
, (2.20)

with Kn given by (2.3) in the complex case, where we also used the asymptotic estimate

erfc(x) = e−x2
/(
√
πx)(1 + O(x−2)) and the bound erfc(x) ≤ e−x2

/(
√
πx). This, together with

the arguments as in (2.7)–(2.14), implies (2.18) and its analog for maxσi∈C\RReσi.
We next focus on the real eigenvalues in (2.19). Since the one point correlation function

for the real eigenvalue process in (2.17) is symmetric, the statement for maxσi∈R |σi| follows
immediately from the one-sided estimate in (2.19). Note that the first term on the right side of
(2.17) is given by√

n

2π
e−nx2

en−2(nx
2) =

√
π

2n
Kn−1(x, x)e

1−x2
(
1 +O(n−1/2)

)
. (2.21)

Using that Γ(z)Γ
(
z+1/2

)
= 21−2z√πΓ(2z), we write the second term on the right side of (2.17)

n
n
2 xn−1e−

n
2
x2

2
n
2 Γ
(
n
2

)
Γ
(
n−1
2

) ∫ nx2

2

0
u

n−3
2 e−udu =

2
n
2
−2n

n
2 xn−1e−

n
2
x2

√
π(n− 2)!

(∫ ∞

0
−
∫ ∞

n
2
x2

)
u

n−3
2 e−udu. (2.22)

Note that the function u
n−3
2 e−

n−3
n

u is decreasing in the regime u ≥ nx2/2 with x ≥ 1. Thus the
last integral over [nx2/2,∞) in (2.22) is bounded from above by∫ ∞

n
2
x2

u
n−3
2 e−udu ≤

(nx2
2

)n−3
2
e−

(n−3)x2

2

∫ ∞

n
2
x2

e−
3
n
udu ≤ Cn

(nx2
2

)n−3
2
e−

(n−3)x2

2 ,

which is much smaller than the whole integral over [0,∞). Thus by Stirling’s formula, we have

n
n
2 xn−1e−

n
2
x2

2
n
2 Γ
(
n
2

)
Γ
(
n−1
2

) ∫ nx2

2

0
u

n−3
2 e−udu =

2
n
2
−2n

n
2 xn−1e−

n
2
x2

√
π(n− 2)!

Γ
(n− 1

2

)
(1 + o(1))

∼ 1

x
e−

n
2

(
x2−2 log x−1

)
+ 1

2
logn. (2.23)

Combining (2.21), (2.23) with (2.17), we have

SR,R
n (x, x) ∼

√
π

2n
Kn−1(x, x)e

1−x2
+

1

x
e−

n
2

(
x2−2 log x−1

)
+ 1

2
logn. (2.24)

Therefore, we obtain an upper bound similarly to (2.8), i.e.,

E
[
#{σi ∈ R : σi ≥ t}

]
=

∫
x>t

SR,R
n (x, x)dx

≤ C

∫ ∞

t

1

x2 − 1
e−n(x2−2 log x−1)dx+ C

√
n

∫ ∞

t

1

x
e−

n
2

(
x2−2 log x−1

)
dx

≤ Cte
−n

2

(
t2−2 log t−1

)
− 1

2
logn, (2.25)

where we also used (2.15) together with the following estimate

e−
n
2
(t2−2 log t)

n(t2 − 1)

(
1− 2t2

n(t2 − 1)2

)
≤
∫ ∞

t

1

x
e−

n
2

(
x2−2 log x

)
dx ≤ e−

n
2
(t2−2 log t)

n(t2 − 1)
. (2.26)

From here we also find a lower bound in the form of (2.25). Using that

1

n
E
[
#{σi ∈ R : σi ≥ t}

]
≤ P

(
max
σi∈R

σi ≥ t
)
≤ E

[
#{σi ∈ R : σi ≥ t}

]
,
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we obtain the desired upper and lower bound to prove (2.19) and hence finish the proof of
Proposition 2.3. □

Proof of Theorem 1.2 for β = 1. As in the complex case, from the LDP for the empirical spectral
measures in the real case we know

lim sup
n→∞

P (ρn ≤ t) ≤ lim sup
n→∞

P
(

n
max
i=1

Reσi ≤ t
)
= −∞, t < 1.

The asserted LDP for ρn follows from Proposition 2.3 since

P
(
max
σi∈R

|σi| ≥ t
)
≤ P (ρn ≥ t) ≤ P

(
max
σi∈R

|σi| ≥ t
)
+ P

(
max

σi∈C\R
|σi| ≥ t

)
.

For the rightmost eigenvalue, we observe that

P
(
max
σi∈R

σi ≥ t
)
≤ P

(
n

max
i=1

Reσi ≥ t
)
≤ P (ρn ≥ t).

The proof is completed using Proposition 2.3 again. □

3. Proofs of Theorems 1.3 and 1.4

3.1. Proof of Theorem 1.3. We first consider the complex Ginibre ensemble. Similar to the

arguments used in (2.7)–(2.11), for any
√

γn
4n ≤ dn ≪ 1, we have

PGin(C)
(

n
max
i=1

|σi| ≥ 1 + dn

)
≤ EGin(C)[#{1 ≤ i ≤ n : |σi| ≥ 1 + dn}

]
=

∫
|z|≥1+dn

Kn(z, z)d
2z

=

∫
|z|≥1+dn

n

π
√
2πn

1

|z|2 − 1
e−n
(
|z|2−2 log |z|−1

)
d2z
(
1 +O(n−1/2)

)
≲

1√
n(dn)2

e−n[(dn)2+2dn−2 log(1+dn)] (3.1)

where we used the upper estimate of (2.9) in the last step. Using a simple Taylor expansion

log(1 + x) = x− x2

2 +O(x3), we obtain that

PGin(C)
(

n
max
i=1

|σi| ≥ 1 + dn

)
≲

1√
n(dn)2

e−2n(dn)2(1−O(dn)). (3.2)

This proves (1.10) for the complex case (β = 2).

The rightmost eigenvalue (1.11) can be estimated similarly. For any
√

γ′
n

4n ≤ dn ≪ 1, we have

PGin(C)( n
max
i=1

Reσi ≥ 1 + dn
)
≤
∫
R

∫
x≥1+dn

Kn(x+ iy, x+ iy)dxdy

=

∫
R

∫
x≥1+dn

n

π
√
2πn

1

x2 + y2 − 1
e−n
(
x2+y2−log(x2+y2)−1

)
dxdy

(
1 +O(n−1/2)

)
≲
√
n

∫
|y|≤10

√
dn

∫ 10

x≥1+dn

1

x2 − 1
e−n
(
x2+y2−log(x2+y2)−1

)
dxdy

+O
( 1√

n(dn)2
e−2n(10dn)2(1−O(dn))

)
, (3.3)

where the integral with y ≥ 10
√
dn or x ≥ 10 is bounded as in (3.1)–(3.2) using that |z|2 =

x2+ y2 ≥ 1+100dn. By a simple Taylor expansion for y ≤ 10
√
dn and 1+dn ≤ x ≤ 10, we have

x2 + y2 − log(x2 + y2)− 1 = x2 + y2 − 2 log x− log
(
1 +

y2

x2

)
− 1
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≥ x2 − 2 log x− 1 + Cy2(x− 1). (3.4)

Therefore we obtain from (3.3) that

PGin(C)( n
max
i=1

Reσi ≥ 1 + dn
)
≲

√
n

∫
x≥1+dn

1

x2 − 1
e−n
(
x2−2 log x−1

)
dx

(∫
|y|≤10

√
dn

e−Cny2dndy

)

+O
( 1√

n(dn)2
e−2n(10dn)2(1−O(dn))

)
≲

1

n(dn)5/2
e−2n(dn)2(1−O(dn)), (3.5)

where we also used the upper estimate in (2.15). This proves (1.11) in the complex case.
We next consider the real case (β = 1). Recall the one-point correlation function for the

complex eigenvalue process in (2.20). The same estimates as in (3.2) and (3.5) also hold true for
the complex eigenvalues of the real Ginibre ensemble. We hence focus on the real eigenvalues.
Similarly to (2.25), we obtain that

PGin(R)(max
σi∈R

σi ≥ 1 + dn
)
≤ E

[
#{σi ∈ R : σi ≥ 1 + dn}

]
≲

1

nd2n
e−n[(dn)2+2dn−2 log(1+dn)] +

1√
ndn

e−
n
2
[(dn)2+2dn−2 log(1+dn)]

≤ 1

nd2n
e−2n(dn)2(1−O(dn)) +

1√
ndn

e−n(dn)2(1−O(dn)), (3.6)

where we also used the estimates in (2.15) and (2.26). Since the second term on the right side
of (3.6) is dominant, this proves (1.12) and hence (1.11) in the real case. One could obtain a
similar upper bound for maxσi∈R |σi| as in (1.12) and hence prove (1.10) in the real case.

Finally, we prove the last statement (1.13). Using similar arguments as in (2.12) and (2.14),
we obtain the following (non-optimal) lower bound (c.f., (3.1), (3.5) and (3.6), respectively)

PGin(C)
(

n
max
i=1

|σi| ≥ 1 + dn

)
≥ 1

n
EGin(C)[#{1 ≤ i ≤ n : |σi| ≥ 1 + dn}

]
≳

1

n3/2(dn)2
e−2n(dn)2(1−O(dn)), (3.7)

PGin(C)( n
max
i=1

Reσi ≥ 1 + dn
)
≳

1

n2(dn)5/2
e−2n(dn)2(1−O(dn)), (3.8)

PGin(R)(max
σi∈R

σi ≥ 1 + dn
)
≳

1

n3/2dn
e−n(dn)2(1−O(dn)). (3.9)

Hence for any
√
log n/n ≪ dn ≪ 1, using that n(dn)

2 ≫ log n, the last statement (1.13)
follows directly from combining the upper estimates (3.2), (3.5)–(3.6) with the lower estimates
(3.7)–(3.9). We hence finish the proof of Theorem 1.3.

3.2. Proof of Theorem 1.4. The estimates in (1.15)–(1.17) for the Ginibre ensembles follow
directly from (1.10)–(1.11), respectively. In particular, along the proof we indeed obtain the
following Ginibre estimates, i.e., for s, t > 1,

EGin
[
#
{
|σi| ≥ 1 + s

√
γn
4n

}]
≲

1

s2

( log n√
n

)s2−1
+

(
log n

) 1
2
(s2−1)

sn
s2

4

1β=1, (3.10)

EGin
[
#
{
Reσi ≥ 1 + t

√
γ′n
4n

}]
≲

1

t
5
2

((log n) 5
4

n
1
4

)t2−1
+

(log n)
5
8
t2− 1

2

tn
t2

8

1β=1, (3.11)
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and for any 1 ≪ sn ≪ log n,

EGin
[
#
{
|σi| ≥ 1 +

√
γn
4n

+
sn

4nγn

}]
≲ e−sn , (3.12)

together with the same estimate for Reσi with γ′n in (1.2), where EGin denotes the expectation
for the Ginibre ensembles. In the following lemma, we extend the above Ginibre results to any
i.i.d. matrices, from which Theorem 1.4 follows.

Lemma 3.1. Under the same conditions as in Theorem 1.4, then for any s, t > 1, there exist
Cs, Ct > 0 such that

E
[
#
{
|σi| ≥ 1 + s

√
γn
4n

}]
≲ (log n)Cs

(
n− s2−1

2 + n− s2

4 1β=1

)
, (3.13)

E
[
#
{
Reσi ≥ 1 + t

√
γ′n
4n

}]
≲ (log n)Ct

(
n− t2−1

4 + n− t2

8 1β=1

)
. (3.14)

Moreover, the Ginibre estimates as in (3.12) also hold true for i.i.d. matrices.

To simplify the arguments, we will only prove Lemma 3.1 in the complex case (β = 2). The
proof for the real case (β = 1) is similar, so we omit it (see more details in [CESX23, Section
2.4]). We will follow the same strategy as in the proof of [CEX23, Theorem 4.1] with minor
modifications. Actually, the proof is much easier since we only focus on the expected number of
eigenvalues in a given regime without considering its fluctuations.

In the proof we will also use the concept of “with very high probability” for an n-dependent
event, meaning that for any fixed D > 0 the probability of the event is bigger than 1 − n−D if
n ≥ n0(D). Moreover, we will use the following standard definition of stochastic domination; its
standard arithmetic properties can be found in Proposition 6.5 in [EY17].

Definition 3.2. Let X ≡ X (N) and Y ≡ Y(N) be two sequences of nonnegative random variables.
We say Y stochastically dominates X if, for all (small) ϵ > 0 and (large) D > 0,

P
(
X (N) > N ϵY(N)

)
≤ N−D, (3.15)

for sufficiently large N ≥ N0(ϵ,D), and we write X ≺ Y or X = O≺(Y).

Proof of Lemma 3.1 in the complex case. From [AEK21, Theorem 2.1], we know that, for any
small τ > 0 and large D > 0,

P
(

n
max
i=1

|σi| ≥ 1 + n− 1
2
+τ
)
≤ n−D. (3.16)

Fix any s ≥ 1 and define an annulus Ωs := {z ∈ C : 1 + s
√

γn
4n ≤ 1 + n−1/2+τ}. Then we have

E
[
#
{
|σi| ≥ 1 + s

√
γn
4n

}]
= E

[
#
{
σi ∈ Ωs

}]
+O(n−D). (3.17)

To count the number of eigenvalues in Ωs, we choose two test functions f±
s ∈ C2

c(C) satisfying
1Ω−

s
≤ f−

s ≤ 1Ωs ≤ f+
s ≤ 1Ω+

s
, (3.18)

which are supported on Ω±
s := {z ∈ C : 1 + s

√
γn
4n ∓ 1√

n
≤ |z| ≤ 1 + n− 1

2
+τ} respectively, and

max
α1,α2∈N

{
n−α1+α2

2 max
z∈C

∣∣∣∂α1
z ∂α2

z̄ f±
s (z)

∣∣∣} = O(1).

It is straightforward to check that the inequalities in (3.18) imply that

E
[
#
{
σi ∈ Ω−

s

}]
≤ E

[ n∑
i=1

f−
s (σi)

]
≤E

[
#
{
σi ∈ Ωs

}]
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≤E
[ n∑

i=1

f+
s (σi)

]
≤ E

[
#
{
σi ∈ Ω+

s

}]
. (3.19)

It then suffices to study the expected linear statistics E
[∑n

i=1 f
±
s (σi)

]
. Note that (3.19) also

holds true when X is a Ginibre matrix. From the Ginibre estimates in (3.10)–(3.11), we know
EGin

[
#
{
σi ∈ Ω±

s

}]
have the same upper bound as EGin

[
#
{
σi ∈ Ωs

}]
, i.e.,

EGin(C)
[
#
{
σi ∈ Ω±

s

}]
≲ (log n)Csn− s2−1

2 , (3.20)

which, together with (3.19), implies that

EGin(C)
[ n∑

i=1

f±
s (σi)

]
≲ (log n)Csn− s2−1

2 . (3.21)

The following proof uses the same strategy as in [CEX23, Sections 6–7]. For the reader’s
convenience, we recall the definitions and notations used there. By Girko’s formula [Gir84], for
any test function f ∈ C2

c (C), the linear statistics Lf :=
∑n

i=1 f(σi) can be written as

Lf =− 1

4π

∫
C
∆zf(z)

∫ T

0
ImTrGz(iη)dηd2z +O≺(n

−100), T := n100, (3.22)

where Gz is the resolvent or Green function of the Hermitised matrix Hz:

Gz(w) := (Hz − w)−1, Hz :=

(
0 X − z

X∗ − z 0

)
, w ∈ C \ R. (3.23)

Choose ηc := n−L for a sufficiently large L > 100 depending on (1.14). Then we define the
following regularized quantity to approximate Lf in the sense of expectation, i.e.,

L̂f := − 1

4π

∫
∆zf(z)

(∫ T

ηc

ImTr
(
Gz(iη)−M z(iη)

)
dη
)
qzd

2z, (3.24)

where the matrixM z is a deterministic approximation of Gz (see more details in [CEX23, Section
3.1]), and qz is a regularized truncating function so that the smallest singular value of X−z does

not fall too much below its typical size n−3/4, i.e., for a fixed small ϵ > 0 and 0 < ζ < ϵ/100,

qz := q

(∫ E0

−E0

ImTrGz(y + iη0)dy

)
, E0 := n−3/4−ϵ, η0 := n−3ζE0, (3.25)

where q : R+ → [0, 1] is a smooth and non-increasing cut-off function such that

q(x) = 1, if 0 ≤ x ≤ 1/9; q(x) = 0, if x ≥ 2/9. (3.26)

Repeating the same arguments as in Step 1–6 from [CEX23, Section 6], we obtain the analog of
[CEX23, Proposition 6.1], i.e., for any test function f = f+

s or f = f−
s chosen in (3.18),

E
∣∣Lf − L̂f

∣∣ = O
(
n−cϵn− s2−1

2

)
, (3.27)

for some small constant c > 0. Compared to [CEX23, Proposition 6.1], we gain an additional

smallness n− s2−1
2 (s ≥ 1) using that |z| > 1+s

√
γn/(4n)+O(n−1/2) from (3.18) and the precise

tail asymptotics of the smallest singular value λz
1 of X − z from [CEX23, Proposition 3.9]:

P
(
λz
1 ≤ E0

)
≲ n3/2E2

0e
−n(|z|2−1)2/2 + n−D, (3.28)

with E0 = n−3/4−ϵ, for any n−1/2 ≪ |z| − 1 ≤ n−1/2+τ and any large D > 0.
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In the following, we aim to compare the expected quantity E[L̂f ] with the corresponding

Ginibre expectation EGin(C)[L̂f ], via a continuous interpolating flow. More precisely, we consider
the Ornstein–Uhlenbeck matrix flow

dHz
t = −1

2
(Hz

t + Z)dt+
1√
n
dBt, Z :=

(
0 zI
zI 0

)
, Bt :=

(
0 Bt

B∗
t 0

)
, (3.29)

with initial condition Hz
t=0 = Hz in (3.23) with the i.i.d. matrix X, where Bt is an n×n matrix

with i.i.d. standard complex valued Brownian motion entries. The matrix flow Hz
t interpolates

between the initial matrixHz and the same matrix withX replaced with an independent complex
Ginibre ensemble. The proof is the same as in [CEX23, Section 7] with a minor modification on
the regime of z, so we omit the details. Repeating the same arguments as in [CEX23, Section
7], we obtain an analog of [CEX23, Proposition 6.2], i.e., for any f = f±

s∣∣∣E[L̂f

]
−EGin(C)[L̂f

]∣∣∣ = O
(
n−1/4+Cϵn− s2−1

2

)
, (3.30)

for some large constant C > 0. Again, compared to [CEX23, Proposition 6.2], we achieve an

additional smallness n− s2−1
2 (s ≥ 1) using (3.28) for |z| > 1+s

√
γn/(4n)+O(n−1/2). Combining

(3.30) with (3.27), for a sufficiently small ϵ > 0, we obtain that∣∣∣E[Lf

]
−EGin(C)[Lf

]∣∣∣ = O
(
n−cϵn− s2−1

2

)
, f = f±

s . (3.31)

This, together with the Ginibre estimate in (3.21), yields that

E
[ n∑

i=1

f±
s (σi)

]
≲ (log n)Csn− s2−1

2 . (3.32)

Combining this with the inequalities in (3.19) and (3.17), we have proved (3.13) for β = 2.
Similarly, one could extend the Ginibre estimates as in (3.12) to i.i.d. matrices as well. More
precisely, we choose slightly different domains than those in (3.18), i.e., Ω±

s = {z ∈ C : 1 +√
γn
4n + sn√

4nγn
∓ 1√

n
≤ |z| ≤ 1 + n− 1

2
+τ}. Repeating the above arguments using (3.28) for

|z| > 1 +
√

γn/(4n) + sn/
√
4nγn with 1 ≪ sn ≪ log n, we then obtain∣∣∣E[Lf

]
−EGin(C)[Lf

]∣∣∣ = O
(
n−cϵe−sn

)
, f = f±

s . (3.33)

Together with (3.17) and (3.19), we hence have extended the Ginibre estimate in (3.12) to
i.i.d. matrices.

Finally for the rightmost eigenvalue, one could prove a similar statement as in (3.31) with a

modified error bound O
(
n−cϵn−(s2−1)/4

)
using that |z| > 1 + s

√
γ′n/(4n) + O(n−1/2) with γ′n

in (1.2) (see modification details in [CEX23]), from which the second statement (3.14) follows.
This completes the proof of Lemma 3.1 in the complex case. □
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